skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bacanli, Salih Safa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A smart home with a controller that can understandand predict the interaction between the external environment and the user’s behavior and preferences can provide significant energy efficiency and savings. Unfortunately, experimentation of real world homes for the development of such a controller is prohibitively expensive. In this paper we describe techniques through which such experiments can be performed on scaled testbed with an accelerated time. We illustrate how the modeling of different geographical areas can be performed by the mapping of the model’s temperature and time to their real-world equivalents. We train three different machine learning models for predicting different sensor readings in the testbed, and find that the achieved predictive accuracy supports the feasibility of the development of future smart climate controllers. 
    more » « less
  2. null (Ed.)
    Green homes require informed energy management decisions. For instance, it is preferable that a comfortable internal temperature is achieved through natural, energy-efficient means such as opening doors or lowering shades as opposed to turning on the air conditioning. This requires the control agent to understand the complex system dynamics of the home: will opening the window raise or lower the temperature in this particular situation? Unfortunately, developing mathematical models of a suburban home situated in its natural environment is a significant challenge, while performing real-world experiments is costly, takes a long time and depends on external circumstances beyond the control of the experimenter. In this paper, we describe the architecture of a physical, small scale model of a suburban home and its immediate exterior environment. Specific scenarios can be enacted using Internet of Things (IoT) actuators that control the doors and windows. We use a suite of IoT sensors to collect data during the scenario. We use deep learning-based temporal regression models to make predictions about the impact of specific actions on the temperature and humidity in the home. 
    more » « less